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A study is made concerning the anisotropy of thermal conductivity in a medium in a state of
strain and concerning the effect of this anisotropy on the heat-transfer characteristics during
forced convection.

The anisotropy of thermal conductivity in convective streams and in strained elastic media, as
revealed by experiments, has confronted researchers with the problem of how fo analyze mechanical
and thermal phenomena interdependently in a format more general than it is done in thermodynamics of
irreversible processes, The anisotropy of thermal conductivity due to convection in a stream of fluid
or due to a state of strain in an elastic medium will be analyzed here, taking into account the effect of
shear anisotropy of thermal conductivity on the anisotropy of the heat-transfer coefficient during forced
laminar flow of a fluid through channels.

The transfer phenomena in a moving medium are described by the equations representing the con-
servation laws with regard to mass, energy, momentum, and moment of momentum. For a medium which
moves symmetrically (r = 7), the differential form of these equations is
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with d denoting the strain-rate tensor
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The thermomechanical determining equations must satisfy simultaneously: 1) the principle that the prop-
erties of materials do not depend on the system of their measurement; and 2) the principle of increase of
entropy or the Clausius — Duhem inequality, which imposes stringent restrictions on the determining equa-
tions and which can be stated in differential form as
divg . ol
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In addition to these basic assumptions, Truesdell has formuated the simultaneity principle [1]: "a quan-
tity which appears as an independent variable in one determining equation will appear in all equations,
provided that this will not violate the laws of physics or the conditions of invariance." This principle is
very important, it expresses the interrelation between transfer phenomena. The simultaneity principle
does not contradict the classical description of the laws of momentum transfer, energy transfer, and
mass transfer. It can be shown, for instance, that the number of variables in the determining equations
for many materials slightly off the equilibrium state becomes lower and that the transfer of individual
substances is described by separate variables.

On the basis of the simultaneity principle, the determining equations for a fluid with mechanical and
thermal fields can be written as follows:
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If the Clausius—Dugem inequality is satisfied, then the determining equations (5) and (6) become the
classical equations of state
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Thus, the variables VT and d drop out from the equations for the thermodynamic parameters T and s.

The static stress component is expressed in terms of @
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where 7 =70 7, T = _p(s, p~Y1, and p(s, p~!) =6u /8!, p(s, p~!) denoting the hydrostatic pressure.
The dissipative stresses and the thermal fluxes are determined by several variables without separation.

With the principle satisfied that the properties of a material do not depend on the measuring system,
we have

m'z =y (7 s ayT, zdz), (11)
z(_;: @, (07 s, 2vT, 2dz); (12)
e., the classical separation of effects applies only to the static stress component and not to the dissi-

pative component 7!, Furthermore, the dissipative inequality

tr {alid} - —--yT >0 (13)
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cannot be separated into two inequalities.

Coleman and Mizel [2] have developed a procedure for separating the variables in the case of a
viscous heat conducting fluid near the state d = 0 and VT = 0.

Let us define the norm of the d @ VT space as follows:
d©yTy = ltr (@) < vT-vT1"°. (14)
Considering that the arguments of the dissipative stress component and of the thermal flux are elements
of the id @ VTl space with norm (14), and applying the mapping theorem to the functions 7t and q, which
satisfy the objectivity principle, we arrive at the follow ing determining equations of the first order with
respect to d for a viscous heat conducting fluid:
7l = ot = 2nd 4 A(trd) I, (15)
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or, in the case of an incompressible fluid
o = ond, g —kyT - Bd-VI- (17)
If k is always positive, moreover, then the sign of 87 depends generally on the flow pattern.

The second term in the determining equation for the thermal flux represents the effect of mechanical
phenomena (strain rate tensor) on the heat transfer in the fluid. It must be emphasized here that account-
ing for the mechanical effect of fluid motion will yield the sought anisotropy of thermal conductivity:
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TABLE 1. Thermal Conductivity k (W /m -deg) of Various Lubri-

cants
- ko, W . A & "y ky Ey
Material fm-°C r 1 1 = i _kI
Solidol "s” . [
GOST 4366-64 0,122 0,115 0,153 1,25 0,96 1,36
GOST 3276-63 0,152 0,137 0,173 1,20 0,90 1,26
Grease 0,171 0,153 0210 | 1,23 0,89 1,37
gz =l yT = — (kl—pd) -y T (18)

Thus, the thermal conductivity Eij becomes a second-rank tensor, i.e., we have a result analogous
to that for oriented media [3, 4].

It is well known that a fluid constitutes an oriented flowing medium when at every point the singular
orientation can be characterized by a vector nj. The simplest theory based on the assumption of incom-
pressibility (o = const), viscoelasticity (njnj = 1), and isothermality (T = const) yields the following expres-
sions for the orientation vector nj, the stress tensor c¢ij, and the thermal flux g;j:

1y = V(dyst; — dyllafimlts)s (19)
055 = PO;; + 20d;; + (2 i Coymfyfin) 1105 -+ 2005 (g + dynny); (20)
q; == ﬁOT,/L - ﬁlnkniT,k’ (21)
with the constant coefficients v, «, 84, and
1 . .
dij = — (%5 + X0 (22)
2
- 1 ,
i My = Wiy, Wy = (Fi,1 = ¥1,0)- (23)
From Eq, (21) we obtain
N oT oT
g; = (B8 + Butiy) ox, = —lky, "a_x;“ . (29

Here
— Ry = ki =2 By -1 By,

It has been shown in [5] that an orientation may result in the process of shear flow. It is almost im-
possible to determine the thermal conductivity of rheological fluids during shear flow. In order to detect
and measure the shear anisotropy of thermal conductivity in flowing media, therefore, it is necessary to
select disperse systems with a long relaxation period. There the internal structure produced by shear
flow will be retained long after the flow has ceased. Greases may serve as such a system, A method has
been developed in {6] for measuring the thermal conductivity during a shear flow of Solidol, by passing this
material through small orifices at a constant shearing rate of 300 sec™! at a temperature of 20°C,

The results of such measurements are shown in Table 1, indicating that the thermal conductivity is
higher parallel to the orientation (k) than perpendicular to it (k). The thermal conductivity under iso-
tropic conditions (kg) lies inside the range ky < k; < k. Having analyzed the test data given in [6], the
authors propose the following empirical formula:

1 1 2
Lz_(_+_->. (25)
k, 3 \ &y k.
Using the test data in Table 1 as the first approximation, and assuming that the thermal conductivity of
a viscous fluid in the boundary layer around a body does not vary along the surface (kx = ky) but does vary
only in the direction normal to the surface, we have for the ratio of thermal conductivities ky /ky =1.33

approximately. For dxy of the order of 150 sec™!, the ratio B1d/k then becomes appromrnately equal to
1/3 (81d/k ~0.33),
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We now return to relation (17) for the thermal flux density and will use it for solving the problem of
convective heat transfer in an incompressible fluid in a cylindrical pipe of radius R under boundary con-
ditions of the second kind,

Considering, for simplicity, the zone of developed steady heat transfer where the hydrodynamic
profile is fully developed according to Poisseuille (U, = 2(1~r? for a circular pipe), we write the equa-
tion of convective heat {ransfer

oT . 1 a ( o, T\ 9 { do, 67“_} 2%
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where T denotes the dimensionless temperature and where the parameter Kg =51/ chpk'%2 defining the

effect of mechanical motion on the heat transfer will be called the critical number of dissipative heat

transfer. The solution, which describes the temperature profile in a circular pipe at gy = const, will be
7

& T —Tn rt 4 27
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It is interesting to note that, when thermal and mechanical effects interact, the Nusselt number changes by
the quantity Kz = 0, namely

Nu = 4.36 —K,. (28)

It is worthwhile to estimate the value of the Ky number, at least to the first approximation. From g1d/k
= 0.33 for water within the 20-50°C temperature range, we have for a pipe 2 cm in diameter (R =1 cm)
K4 = 0.7 approximately. For smaller pipe radii the value of Kq becomes higher. In the case of an elastic
continuous medium, accounting for the state of strain will also yield an anisotropic thermal conductivity
and will reveal a change in the pattern of heat transfer.
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