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A study is made concerning the anisot ropy of thermal conductivity in a medium in a state of 
s t rain and concerning the effect of this anisotropy on the hea t - t r ans fe r  charac te r i s t i cs  during 
forced convection. 

The anisotropy of thermal  conductivity in convective s t reams  and in s trained elastic media, as 
revealed by exper iments ,  has confronted r e s e a r c h e r s  with the problem of how to analyze mechanical  
and thermal  phenomena interdependently in a format  more general  than it is done in thermodynamics  of 
i r r eve r s ib le  p roces se s .  The anisotropy of thermal  conductivity due to convection in a s t r eam of fluid 
or due to a state of s train in an elast ic medium will be analyzed here,  taking into account the effect of 
shear  anisotropy of thermal  conductivity on the anisotropy of the hea t - t r ans fe r  coefficient during forced 
laminar  flow of a fluid through channels. 

The t ransfer  phenomena in a moving medium are descr ibed by the equations represent ing  the con-  
servat ion laws with r e g a r d t o  mass ,  energy,  momentum, and moment of momentum. For  a medium which 
moves symmet r i ca l ly  (~ = g),  the differential f o r m  of these equations is 

:~ ~ (1) 
. . . .  p div.v, 9.v = ~ -i- div~, 

,,,; . . . . . .  div 7 + p]~, -:: {r {i~:it}, (2) 

with ~ denoting the s t r a i n - r a t e  tensor  

c. -~ ..... VX;" (3) 
2 

The thermomechanica l  determining equations must  sa t isfy  simultaneously:  1) the principle that the p rop-  
er t ies  of mater ia ls  do not depend on the sys tem of their measurement ;  and 2) the principle of increase of 
entropy or the C l a u s i u s - D u h e m  inequality, which imposes s tr ingent  res t r ic t ions  on the determining equa- 
tions and which can be stated in differential form as 

�9 div q plq 1 q". grad T. (4) ps > , - - - -  
T T T 2 

In addition to these basic assumpt ions ,  Truesdel l  has formulated the simultaneity principle [1]: "a quan- 
t i ty which appears  as an independent variable in one determining equation will appear in all equations, 
provided that this will not violate the laws of physics or the conditions of invarianee." This principle is 
ve ry  important,  it expresses  the interrelat ion between t rans fe r  phenomena. The s imultanei ty principle 
does not contradict  the c lass ica l  descr ipt ion of the laws of momentum t rans fe r ,  energy t r ans fe r ,  and 
mass t rans fe r .  It can be shown, for instance, that the number  of variables in the determining equations 
for many mater ia ls  sl ightly off the equilibrium state becomes lower and that the t rans fe r  of individual 
substances is descr ibed by separa te  variables�9 

On the basis  of the s imultanei ty principle,  the deternaining equations for a fluid with mechanical and 
thermal  fields can be writ ten as follows: 
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T =: q5 (d~ p-i, u, vT), 

s = q~s (d, p-i, u, vT), 

= ~ ( d ,  p-i, u, vT), 

q =: q)q (~ p-J, u, vT). 

(5) 

(6) 

(7) 

(8) 

tf the C l a u s i u s - D u g e m  inequali ty is sa t i s f ied ,  then the de te rmin ing  equations (5) and (6) become  the 
c l a s s i c a l  equations of s ta te  

T := O~. (s, p-J), s .... q~.~ (u, I,-r). 

aa (s, I' ~) .(9) 
tt =: qS,,(s, p-~). T ..... ~h,.(s, I, -j) 

~)s 

Thus,  the va r iab les  ~TT and ~ drop out f rom the equations for the the rmodynamic  p a r a m e t e r s  T and s. 

The s tat ic  s t r e s s  component  is e x p r e s s e d  in t e r m s  of '~u: 

~~ = iT 0r (u, e -~ )  _ 0 r  (s, ~-~) i:, (10) 
0p-1 0p-1 

where  ~ = ~ + ~ l ,  ~0 = - p ( s ,  p -t)~, and p(s,  p<)  = ~u/Op "1 , p(s,  p-i)  denoting the hydros ta t ic  p r e s s u r e .  
The d iss ipa t ive  s t r e s s e s  and the t he rm a l  fluxes a r e  de te rmined  by s eve ra l  va r iab les  without separa t ion .  

With the pr inc ip le  sa t i s f i ed  that the pz:operties of a ma te r i a l  do not depend on the measur ing  s y s t e m ,  
we have 

z~tz  = Cnl (p-i, s; zvT, zdz), (11) 

zq = q~l(p -1, s, zvT, zdz); (12) 

i .e . ,  the c l a s s i c a l  separa t ion  of effects  appl ies  only to the stat ic  s t r e s s  component  and not to the d i s s i -  
pat ive component  v l. F u r t h e r m o r e ,  the d iss ipa t ive  inequality 

t r  {~d~-[- q-~-.V T > 0  (13) 
1 

cannot be  s e p a r a t e  d into two inequali t ies .  

Coleman and Mizel [2] have developed a p rocedure  for  separa t ing  the va r iab les  in the case  of a 
viscous heat  conducting fluid nea r  the s tate  ~ = 0 and VT = 0. 

Le t  us define the norm of the ~ $ VT space as follows: 

i[~@ vTil = [tr (~) -~- vT .vT]  ~/2 . (14) 

Consider ing  that  the a rguments  of the d iss ipat ive  s t r e s s  component  and of the t he rma l  flux a re  e lements  
of the 110 ~ VT II space  with n o r m  (14), and applying the mapping theorem to the functions ~l and q, which 
sa t i s fy  the object ivi ty  pr inc ip le ,  we a r r i v e  at the following de te rmin ing  equations of the f i r s t  o rder  with 
r e s p e c t  to ~ for  a viscous heat  conducting fluid: 

~7 = 3z = 2~1c~=-t- k (tra~ I, (15) 

q" ....... k v T  i ~,3{'T ', [~n (h-d). V T (16) 

or ,  in the case  of an incompress ib le  fluid 

~ =  2~s ~:=--/~vT J ~;i vT'. (17) 

If k is always posi t ive,  m o r e o v e r ,  then the sign off l I  depends gene ra l ly  o n t h e  flow pa t te rn .  

The second t e r m  in the de te rmin ing  equation for the t he rma l  flux r e p r e s e n t s  the effect  of mechanical  
phenomena (s t rain r a t e  tensor)  on the hea t - t r ans fe r  in the fluid. It must  be emphas ized  he re  that account-  
hag for  the mechanical  effect  of fluid motion will yield the sought an iso t ropy  of t he rma l  conductivity:  
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TABLE i. 
cants 

Material 

So!idol "s" ~. 
GOST 4366-64 
COST 3276-63 
Gre  ase  

Thermal  Conductivity k (W/m �9 deg) of VariouS Lubr i -  

l k0, W . 
I/re. ~ 

0,122 
0,152 
0,171 

k •  

0,115 
0,137 
0,153 

k II 

0,153 
0,173 
0,210 

k 1[ 
W 

1,25 
1,20 
1,23 

kA. 
W 

0,96 
0,90 
0,89 

k II 
k I 

1,36 
1,26 
1,37 

, ; :  - -  km,'T . . . . .  ( / a - b ~ i )  �9 vT. ( i s )  
e 

ThuS, the thermal  conductivity kij becomes a second-rank  tensor ,  i.e., we have a resul t  analogous 
to that for oriented media [3, 4]. 

It iS welt known that a fluid consti tutes an oriented flowing medium when at every  point the singular 
orientation can be cha rac te r i zed  by a vector  n i. The s imples t  theory  based on the assumption of incom- 
press ib i l i ty  (p = const),  v i scoelas t ic i ty  (nini = 1), and isothermal i ty  (T = const) yields the following expres-  
sions for the orientation vector  ni, the s t r e s s  tensor  aij, and the thermal  flux qi: 

n i == ? (duny - -  dt~mndL~ni), 

o u = p5 u + 2adi.i -~ (at  -', a~dhmnknm) nini  -~ 2a 8 (ozjhnkn i -[- dihnhn~); 

q~ .... [JoT,1~ - i  ~ln~niT,~, 

(19)  

(20) 

(21) 

with the constant coefficients y, a i ,  fib and 

1 
d~j = - f -  (}.~. + xj#);  

l 

(22) 

(23) 

F r o m  Eq. (21) we obtain 

OT OT 
qi = (goSiJ~ + ~lrhnD Ox1~ - kil~ Ox~ (24) 

Here 

-"~ ih =- k[k =.= ~o~ii~ -I- I~lnir% 

It has been shown in [5] that an orientation may resu l t  in the p rocess  of shear  flow. It is a lmost  im- 
possible to determine the thermal  conductivity of rheological  fluids during shear  flow. In o rder  to detect 
and measure  the shear  anisotropy of thermal  conductivity in flowing media, therefore ,  it is n e c e s s a r y  to 
se lec t  d i sperse  sys tems  with a long relaxation period. There  the internal s t ruc ture  produced by shear  
flow will be retained long after the flow has ceased.  Greases  may se rve  as such a sys tem.  A method has 
been developed in [6] for measur ing  the thermal  conductivity during a shear  flow of Solidol, by passing this 
mater ia l  through small  or i f ices  at a constant  shear ing  ra te  of 300 sec -1 at a t empera ture  of 20~C. 

The resul ts  of such measurements  are  shown in Table 1, indicating that the thermal  conductivity is 
higher paral lel  to the orientation (k I]) than perpendicular  to it (k• The thermal  conductivity under • 
t ropic  conditions (k0) lies inside the range k• < k 0 < k H. Having analyzed the tes t  data given in [6], the 
authors  propose the following empir ica l  formula:  

k 0 3 

Using the test  data in Table 1 as the f i rs t  approximation,  and assuming that the thermal  conductivity of 
a viseous fluid in the boundary layer  arotmd a body does not va ry  along the sur face  (kx -- k 0) but does vary  
only in the direction normal  to the surface,  we have for the ra t io  of thermal  conductivities k y / k  x = 1,33 
approximately.  For  dxy of the o rder  of 150 see - t ,  the rat io f l id /k  then becomes approximately  equal to 
1 / 3  (flId/k ~0.33).  
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We now re turn  to re la t ion  (17) for the t he rma l  flux densi ty  and will use it for solving the p rob lem of 
convect ive heat  t r a n s f e r  in an incompress ib le  fluid in a cyl indrical  pipe of radius  R under boundary con-  
ditions of the second kind. 

Consider ing ,  for s impl ic i ty ,  the zone of developed s teady heat  t r a n s f e r  where  the hydrodynamic  
prof i le  is fully developed accord ing  to Poisseu i l le  (U z = 2 ( 1 - r  2) for a c i r cu l a r  pipe), we wri te  the equa-  
t ion of convect ive heat  t r a n s f e r  

v ~ = v ~ T - - K a  - -~f- ~' T az / + -0~s " a---r- Or ' 

where  T denotes the d imens ion less  t e m p e r a t u r e  and where  the p a r a m e t e r  Kd =/3I /2pcpR 2 defining the 
effect  of mechanica l  motion on the heat  t r a n s f e r  will be cal led the c r i t i ca l  number  of d iss ipa t ive  heat  
t r a n s f e r .  The solution, which desc r ibes  the t e m p e r a t u r e  prof i le  in a c i r c u l a r  pipe at  qw = const ,  will be 

r ~ 7 ~ , =  T - - T m  -- (1- -4Ka)  r 2 -  -47 4-~-Kd. (27) 
qR/k 4 24 3 

It is in teres t ing  to note that ,  when the rma l  and mechanica l  effects  in teract ,  the Nusse l t  numbe r  changes by 
the quantity K d ~ 0, nam e l y  

Nu = 4.36--Ka- (28) 

It is worthwhile to e s t i m a t e  the value of the K d number ,  at l eas t  to the f i r s t  approximat ion .  F r o m  f l Id /k  
0.33 for  wa te r  within the 20-50~ t e m p e r a t u r e  range ,  we have for a pipe 2 cm in d i a m e t e r  (R = 1 cm) 

K d = 0.7 approx imate ly .  For  s m a l l e r  pipe radi i  the value of K d becomes  higher .  In the case  of an e las t ic  
continuous medium,  accounting for the s ta te  of s t r a in  will a l so  yield an an tso t ropic  t he rma l  conductivity 
and will r evea l  a change in the pa t te rn  of heat  t r a n s f e r .  
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